
Classical q-deformation of su(2) and Os(1)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 5835

(http://iopscience.iop.org/0305-4470/26/21/021)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 19:59

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A Math. Gen. 26 (1993) 5835-5844. F'rinted in the UK 

Classical q-deformation of 4 2 )  and Os(1) 

ConstanGa da ProvidSncia, Lucilia Brito and Joio da Provid2ncia 
Departamento de Fisica, Universidade de Coimbra, P3000 Coimbra, Pomgal 

Received 18 May 1993 

Abstract. Thegenerators ofthe classical suq (2) and Os, (1) quantum groups are obtained from the 
non-deformed ones by means of an appropriate mapping and by imposing the Poisson bracket (PE) 
relations of the deformed algebras. The classic limit of the q-deformed Lip!& model is obtained 
from a timedependent variational principle and its orbits are represented in phase space. 

Inthepresent workweobtaintheclassicalq-deformed Os(1) andsu(2) algebrasfromthenon- 
deforme ones by means of an appropriate mapping and by imposing the Poisson bracket (PB) 
relations of the deformed algebra, fdlowing the method of [l]. These relations are compared 
with the mean-field results discussed in 121 and applied to the semiclassical limit of the suq(2) 
Linkin model. 

Let c?, c?* be a set of coordinates which obey the PB relations of Os(1): 

(c?,c?*] = -i. 

Defining N = Ec?', we also have 

(N,E]=ic? {N,E*]=-ic?*. 

We intmduce a mapping that transforms the generators c. -.; above algebra, 
into the generators of the classical q-deformed su(2) algebra, J+, 3- and &: 

3' = N - j 3- = c?g-(N) J+ = c?*g+(N).  

(2)  

c?* and N, 

(3) 

The functions g-(N) and g+(N) are determined in such a way that the following PB relations 
are verified: 

{ & , A I  = (44  

U+, 3-1 = -i[2ZZ1 (46) 

where 

We obtain 
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The choice C = cosh(y(2j))/(2y si& y) leads to 

C da Providhcia et a1 

This preserves the appropriate form in the limit q -+ 1. In the standard representation the 
generators 3- and 3+ are the complex conjugate of each other and we get 

g + W )  = g- W )  = d [ 2 j  - N l [ N l / N  

with 

v = m  
The following representation for the generators of the classical su,(2) deformed algebra is, 
obtained: 

We also wish to define the generators of the su,(2) deformed algebra in terms of the 
generators of the Os,(l) deformed algebra, &, &* and N .  ?he same procedure will be used 
but first the Os,(l) algebra will be determined from the non-deformed Os(1) algebra. Let 

N = N 6' = &*h+(N) 6 = & h - ( N ) .  (9) 

We choose the functions h + ( N ) ,  h - ( N )  in such a way that the following PE relations are 
verified [ 3 ] :  

(N, &] = i& 

(N, E * ]  = -i&* 

Then, (loa) and (lob) are automatically satisfied and from (lOc) we get 

[NI 
N 

h+(N) h - ( N )  = q-  . 

In the standard representation, the q-deformed variables &, &* are given by 

In order to obtain the mapping which expresses the generators of the su,(2) algebra in 
terms of the generators of the Os,(l) algebra we introduce the generators of the suq(2) algebra 
by 

3; = N - j 3- =&f-(N) 3+ = & * f + ( N )  (13) 
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where the functions f+(N), f-(N) are determined in such a way that the PB relations defined 
in (4) are verified: 

(14) f + ( N )  f-(N) = v[2j - NI. 

In the standard representation, 

f - (W = f+(W = V m F G  

& = N - j  3- = &Jm 3+ = &*Jm. (15) 

and 

The last relations resemble the mapping obtained in [ 11 and [4] except for the appearance of 
the factor v. 

In [Z], the su,(2) quantum algebra is discussed in the framework of the mean-field 
approximation. Following this reference we consider the coherent state 

where 

J - [ @ )  = 0 J z l @ )  = - j l O ) .  

We introduce the operator fi such that 

f i J p a )  = nJiI@) 

and denote the mean value of [fi] and [2j - fi] by 

The following relation is easily derived 

([GI) = axa([2j - f i l )  

In [2], the approximation 

is proposed. The mean-field values of the generators JL,  J - ,  J+ are 
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lsble 1. Values of CO’, y )  as a function y and j .  

CCi,y) j = S  j = 15 j = U  j = 50 j = 1 0 0  I )  

y =0.05 1,0030665 1.0079715 1.0106602 1.0124089 1.0125884 3.0002083 
v=O.1 1.0116237 1.0228884 1.0249722 1.0253125 1.0253153 l.WO8334 
y=O.2 1.0388417 1.0510120 1.0512660 1.0512705 1.0512715 1.0033344 

In terms of the approximation introduced in (ZO), equations (21) take the form 

gZ = (2)  - j 

g+ = ol*q[Zj - ( f i b ] .  

(7-24 

3- = aq[Zj - (22b) 
(22c) 

From (19), (20) and (12) the following relations between the variables a, a* and the variables 
which have been identified as the generators of the classical Os,(l) algebra, &, ti*, are’ 
obtained: 

&ti* = q [ ( l i r ) l =  arcU*q[Zj - ($1 (23) 

or 

ti* = a *Ja ~ = a J z .  

Finally, in the present apprwimation we get 

zZ = N) - j  

J+ = &*Jq[2j - (@)I. (244 

With (24) we recover (15). 
We recall that the aim of postulating (ZOa, b) was to preserve the su&) algebra when 

the commutators are replaced by PB relations. Actually the numerical results reported in [2] 
suggest that a slightly improved approximation may be more adequate. This is indeed the case, 
as we shall see. We conclude that the expressions (24) coincide with (15) previously obtained 
if (IF) is substituted by the generator N .  

In order to test the validity of the approximation imposed by (20) we have calculated the 
ratios 

for several values of j and y .  For JZ = ?c j ,  the values of the ratios are independent of j 
and y :  u1 = q2, 142 = 1 for Jz = - j  and U I  = 1. u2 = q’ for & = j .  We denote by 
C( j ,  y )  the common value of 141 and u2 for TZ = 0. 

In table 1 the values of C( j ,  y )  are given as a function of y and j .  The last column of this 
table gives q for the values of y considered. We conclude that for large values of j .  C( j ,  y )  
is a function of y only. The stabilization of the C ( j ,  y )  with j for a given y is faster the 
larger is y .  For large j and y the approximation (20) is indeed improved if q is substituted 
by C ( y )  = C ( j  = bo, y ) .  It was shown in [2] that U I ,  u2 are appmximatly equal for a large 
range of 3;. 
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U j = 15 j = U  j = 5 0  

y = O  0.033 0.020 0.005 
y = 0.2 0.011 0.004 0,001 
Y = 0.4 0.005 0.002 0,0005 

We discuss now a possible explanation for this behaviour. We introduce the mean value of i? 
using the q-deformed binomial distribution 

with 

This corresponds to the expectation value of the operator f i  using the coherent state (16) with 
01 = 1. Calculating the mean square root of the variance of I t ,  

for different values of y we conclude that the value of U for a given j gets smaller as y 
increases. This is seen in table 2. 

The numerical results in table 1 suggest an improved version of the approximation (20) 
leading to 

with N = (fi). The difference between (15) and (26b). (26c) lies in the replacement of q by 
C = C ( j ,  y ) .  The new generators of SI(&) satisfy the PB relations (k). The PB relation (46) 
is slightly modified: 

In the present approximation the Casimir operator is given by [2] 

We will study the classical Limit of the deformed Lipkin model 151. The model consists 
of N fermions interacting via o n e  and two-body forces. The fermions are distributed in two 
levels, each having an N-fold degeneracy. The energy difference between the levels is E. 
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Owing to the symmebies of the system, the Hamiltonian of the system can be written in terms 
of the generators of su(2): 
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V 
H = eJZ + -(J: + 51) .  2 

In the sequel we will consider that the energy of the system is obtained from the above 
Hamiltonian but the generators Jz, J+, J- obey the commutation relations of the su,(2) 
algebra [6]. The ground state of the system if V = 0 is the state with all the particles in 
the lowest energy level and Jz = - j :  

lo) = lj - j) 
For V # 0 we use the coherent state introduced in (16) to describe the system. We are replacing 
the total Hilbert space of the quantum systemby the manifold spanned by the variables a, a*. 
The expectation value of a general operator X is given by 

The dynamics of the system will be described by the time evolution of the variables a, a*. 
The action in terms of these coordinates is given by 

with 

7 1 ( a , ~ * ) = ~ ( - j + ( k ) ) + ~ ( ~ z + ~ * * ) ( [ 2 j - k l ~ 2 j - k -  V 1 1 ) .  (31) 

In terms of the expectation values of the operators Jz, J+, J- already calculated in (21) we 
have 

We may say that the factor ([j - Jl][j - Jz - l])/([j - JJ)' accounts for Pauli principle 
effects. If this factor is replaced by 1 the exchange effects are neglected. In the limit q + 1 
this last expression reduces to [71 

V 2 j - 1  
2 Z j  71 = €Jz + -- (3-j + J 3 .  

Wedefinetheclassicallimit ofthe present modelasthesystem whosedynamicsisdescriibed 
by the Hamiltonian (28) with the operators Jz, J+, J- substituted by the classical generators 
defined in (26). This corresponds to the Hamiltonian (32) excluding the Pauli principle effects. 
Instead of J+, J- we could have chosen 3-=, Jy. For a given energy E the trajectory of the 
system is given by the intersection of two surfaces; one defines E: 

E = 6JZ + - 3;) ( 3 3 4  
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and the other, obtained from (27b). the total angular momentum: 

3; + J,? + c2[&l2 = C2[j l2 .  

There are two possible types of motion according to the value of the parameter 

(i) For x < 1 the ground-state energy is 

EO = -6j 

and the su(2) generators have the values 

& = - j  3*=0. 

The energy of the normal mode of the system in this regime is 

Q=m, 
It is clearly seen from the normal mode energy that x = 1 defines a phase transition to a 
new regime. We point out that the parameter which defines this phase transition is no longer 
2 j lV l /6  as in the q = 1 l i t .  

(ii) For x > 1 the ground-state energy corresponds to a value of A different from zero 
and fz t - j .  

If the ground-state energy is calculated from (32) without further approximations we obtain 
the same two different regimes. The parameter which defines the phase transition in the present 
case is 

For x' -= 1 the energy of the ground state, &, 3& and the energy of the normal mode are given 
by ( 3 3 ,  (36) and (37) respectively, with x substituted by x'.  

In the sequel we choose 6 = 0.1 MeV. In figures l(a) and (b) we compare, for two different 
values of j ( j  = 15 and 50) and y = 0.05 and 0.2, the exact Lipkin ground-state energy 
(triangles) with the classical one (broken curve). The ground-state energies are plotted as a 
function of the parameter x' .  The classical ground-state energies were obtained minimizing 
(33a) with respect to r2 and C*. For j = 15 the agreement improves with y as expected. The 
slope of the curve representing the classical results for y = 0.05 is bigger because the Pauli 
principle is not taken into account. 

In figures 2(a) and (b) we represent in the plane &Ay the orbits of the system for several 
energies. We have chosen x = 5.0, j = 15 and y = 0.0 (figure 2(a)) and y = 0.2 
(figure 2(b)). The phase-space trajectories lie on a sphere of radius j in the case y = 0.0 or on 
an ellipsoidal surface for y = 0.2 and correspond to the intersection of these geometric figures 
with the energy surface (33a), a paraboliohyperbolic surface. In both figures the full triangles 
correspond to the two energy minima (EO) of the system and the open circles to the two energy 
maxima (E- = -EO). For energies close to EO (-Eo)  the trajectory will describe a closed 
path around EO (-EO) .  In this case there are two possible trajectories for each energy. This 
occurs for y = 0.0 at E = 0.95Eo and 0.4Eo (E = -0.95E0, -0.4Eo). For y = 0.2 and 
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Figure 1. (a) The exact (full triangles) and classical (broken curve) ground-state energies as a 
function of x', for j = 15. (b) The exact (full triangles) and classical (broken curve) ground-state 
energies as a function of x', for j = 50. 

E = 0.4E0 ( E  = -0.4Eo) the trajectoly turns around JZ, a behaviour which occurs for all 
values of the energy if x c 1. For x > 1, the transition to this regime occurs when E > --6j 
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Figore 2. The biljeuories for the classical Lipkin model in the J’..7,5 plane for x = 5.0. 
The static solutions are represent by the full triangles (minima, E = EO) and open circles 
(“a, E = -&I. The labels 1-5 comespond respectively to trajectories with energies 
0.95Eo. 0.4Eo. 0.2Eo. -0.2Eo. -0.4E0, -0.95Eo (Eo = -4.42 MeV). (b) As in (4 for 
y = 0.2, Eo = -2.5 MeV. 
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or E < 6j. At E = -6j and E = c j  the energy parabola vertex crosses towards the south or 
north pole, respectively, of the ellipsoidal surface (33b). The curvature of the energy surface 
defines the ground-state energy and the behaviour of the phasespace trajectories. On the &Jy 
plane the curvature is equal to 2x/[2jl, and therefore decreases with y .  This explains the 
increase of the ground-state energy with y for the same x :  the intersection of the two surfaces 
(33) is only possible at higher energies. 

We conclude that for a fixed value of the parameter x the deformed phase solution gets 
closer to the normal phase solution when y increases. Similar conclusions have been reached 
in [6]. Wewouldliketopointout, however, that inorderto keepx constantwhentheparameter 
y increases the two-body interaction strength V decreases drastically. 

We recover the quantum description of the system choosing the allowed orbits as the ones 
which verify the Sommerfeld relation 

p d q  = 2n(n + 2) 

C ah Pmvidtncia et a1 

1 ! 
or, in terms of &, JY, 

We have obtained a realization of the classical su,(2) in terms of the generators of both the 
classical &(I) and Os,(l) algebras. This is compared with the mean-field results obtained 
in [Z] for the generators of su,(Z). Our expressions coincide with the mean-field values if the 
classical generator N is substituted by the mean value of the number operator (fi). 

Fromanumericalanalysisof thevalidityofthemean-fieldapproximationit wasshowntbat 
a small improvement could be introduced in the definition of the algebra generators. According 
to this the new generators are given by (26). 

The q-defonnedlipkin model is studied in the classical approximation. It is shown that the 
model parameter is x' = [2 j  - l l lVl/6 in the mean-field approximation, and x = [ZjllVl/c 
in the classical approximation (Pauli principle effects are neglected). The transition from the 
normal phase to the deformed one occurs when the model parameter is equal to 1, in both 
approximations. For a given j we have verified that the classical approximation improves with 
the deformation parameter y .  Finally we have proposed the Sommerfeld relation as a way of 
recovering the quantum description. 
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